logo search
Учебник спорт

Локализация и механизмы утомление

Степень участия тех или иных физиологических систем в выполнении упражнений разного характера и мощности неодинакова. В выполнении любого упражнения можно выделить основные, ведущие, наиболее загружаемые системы, функциональные возможности которых определяют способность человека выполнить данное упражнение на требуемом уровне интенсивности и (или) качества. Степень загруженности этих систем по отношению к их максимальным возможностям определяет предельную продолжительность выполнения данного упражнения, т. е. период наступления состояния утомления. Таким образом, функциональные возможности ведущих систем не только определяют, но и лимитируют интенсивность и предельную продолжительность и (или) качество выполнения данного упражнения.

При выполнении разных упражнений причины утомления неодинаковы. Рассмотрение основных причин утомления связано с двумя основными понятиями. Первое понятие - локализация утомления, т. е. выделение той ведущей системы (или систем), функциональные изменения в которой и определяют наступление состояния утомления. Второе понятие - механизмы утомления, т. е. те конкретные изменения в деятельности ведущих функциональных систем, которые обусловливают развитие утомления.

По локализации утомления можно, по существу, рассматривать три основные группы систем, обеспечивающих выполнение любого упражнения:

  1. регулирующие системы - центральная нервная система, вегетативная нервная система и гормонально-гуморальная система;

  2. система вегетативного обеспечения мышечной Деятельности - системы дыхания, крови и кровообращения;

  3. исполнительная система - двигательный (периферический нервно-мышечный) аппарат.

При выполнении любого упражнения происходят функциональные изменения в состоянии нервных центров, управляющих мышечной деятельностью и регулирующих ее вегетативное обеспечение. При этом наиболее "чувствительными" к утомлению являются корковые нервные центры. Проявлениями центрально-нервного утомления являются нарушения в координации функций (в частности, движений), возникновение чувства усталости. Как писал И.М. Сеченов (1903), "источник ощущения усталости помещается обыкновенно в работающие мышцы; я же помещаю его... исключительно в центральную нервную систему".

Механизмы центрально-нервного утомления остаются еще во многом невыясненными. Согласно теории И.П. Павлова, утомление нервных клеток есть проявление запредельного, охранительного торможения, возникающего вследствие их интенсивной (продолжительной) активности. Предполагается, в частности, что такое торможение возникает во время работы в результате интенсивной проприоцептивной импульсации от рецепторов работающих мышц, суставов связок и капсул движущихся частей тела, достигающей всех уровней центральной нервной системы, вплоть до коры головного, мозга.

Утомление может быть связано с изменениями в деятельности вегетативной нервной системы и желез внутренней секреции.

Роль, последних особенно велика при длительных упражнениях (А.А. Виру). Изменения в деятельности этих систем могут вести к нарушениям в регуляции вегетативных функций, энергетического обеспечения мышечной деятельности и т. д.

Причиной развития утомления могут служить многие изменения, в деятельности систем вегетативного обеспечения, прежде всего дыхательной и сердечнососудистой систем. Главное следствие таких- изменений - снижение кислородтранспортных возможностей организма работающего человека.

Утомление может быть связано о изменениями в самом исполнительном аппарате - в.работающих мышцах. При этом мышечное (периферическое) утомление является результатом изменений, возникающих либо в самом сократительном аппарате мышечных волокон, либо в нервно-мышечных синапсах, либо в системе электромеханической связи мышечных волокон. При любой из этих локализаций мышечное утомление проявляется в снижении сократительной способности мышц.

Еще в прошлом веке были сформулированы три основных механизма мышечного утомления:

1) истощение энергетических ресурсов,

2) засорение или отравление накапливающимися продуктами распада энергетических веществ,

3) задушение в результате недостаточного поступления кислорода. В настоящее время выяснено, что роль этих механизмов в развитии утомления неодинакова при выполнении разных упражнений.

При выполнении анаэробных упражнений очень важную роль в развитии мышечного утомления играет истощение внутримышечных запасов фосфагенов, особенно в упражнениях максимальной и околомаксимальной мощности. К концу их выполнения содержание АТФ снижается на 30-50%, а КФ-на 80-90% от исходного уровня. Поскольку для этих упражнений фосфагены служат ведущим энергетическим субстратом, их истощение ведет к невозможности поддерживать требуемую мощность мышечных сокращений. Чем ниже мощность нагрузки, тем меньше снижается содержание фосфагенов в рабочих мышцах к концу работы и тем меньшую роль играет это снижение в развитии мышечного утомления. При выполнении аэробных упражнений снижения запасов внутримышечных фосфагенов не происходит или оно незначительно, поэтому данный механизм не играет какой-либо роли в развитии утомления.

При выполнении упражнений околомаксимальной и особенно субмаксимальной анаэробной мощности, а также максимальной аэробной мощности ведущую или существенную роль в энергообеспечении рабочих мышц играет анаэробный гликолиз (гликогенолиз). В результате этой реакции образуется большое количество молочной кислоты, что ведет к повышению концентрации водородных ионов (снижению рН) в мышечных клетках. В результате тормозится скорость гликолиза и соответственно скорость энергопродукции, необходимая для поддержания требуемой мощности мышечных сокращений. Таким образом, накопление молочной кислоты (снижение рН) в рабочих мышцах является ведущим механизмом мышечного утомления при выполнении упражнений субмаксимальной анаэробной мощности и очень существенным - при выполнении упражнений околомаксимальной анаэробной и максимальной аэробной мощности.

За время выполнения упражнений максимальной анаэробной мощности мышечный гликогенолиз не успевает развернуться, поэтому накопление лактата в мышечных клетках невелико. Чем ниже мощность нагрузки в упражнениях аэробной мощности, тем меньше роль анаэробного гликолиза в мышечной знергопродукции и соответственно тем ниже содержание лактата в мышцах в конце работы. Следовательно, как й при выполнении упражнений максимальной анаэробной мощности, так и при выполнении упражнений немаксимальной аэробной мощности не происходит значительного накопления лактата в мышцах, и потому этот механизм не играет сколько-нибудь значительной роли в развитии мышечного утомления.

Важную, а для некоторых упражнений решающую роль в развитии утомления играет истощение углеводных ресурсов, в первую очередь гликогена в рабочих мышцах и печени. Мышечный гликоген служит основным субстратом (не считая фосфагенов) для энергетического обеспечения анаэробных и максимальных аэробных упражнений. При выполнении их он расщепляется почти исключительно анаэробным путем с образованием лактата, из-за тормозящего действия которого (снижения рН) высокая скорость расходования мышечного гликогена быстро уменьшается, что в конце концов предопределяет кратковременность таких упражнений. Поэтому расход мышечного гликогена при их выполнении невелик - до 30% от исходного содержания - и не может рассматриваться как важный фактор мышечного утомления.

В околомаксймальных и в субмаксимальных аэробных упражнениях углеводы (мышечный, гликоген и глюкоза крови) служат основными энергетическими субстратами рабочих мышц, используемыми в окислительных реакциях. В процессе выполнения субмаксимальных аэробных упражнений мышечный гликоген расходуется особенно значительно, так что момент отказа от продолжения их часто совпадает с почти полным или даже полным расходованием гликогена в основных рабочих мышцах. Это дает основание считать" что истощение мышечного гликогена служит ведущим механизмом утомления при выполнении данных упражнений.

Значение углеводных ресурсов организма для субмаксимальной аэробной работоспособности доказано в специальных исследованиях. Испытуемые выполняли в них упражнение субмаксимальной аэробной мощности (на уровне около 75% от МПК) один раз до отказа при нормальном исходном содержании гликогена в мышцах и печени на фоне обычного, смешанного пищевого рациона, (контрольное упражнение). В среднем предельная продолжительность упражнения составляла около 90 мин. В конце работы содержание гликогена в мышцах падало почти до нуля - "истощающая" гликоген нагрузка. Это же упражнение испытуемые, выполняли повторно через 3 дня. В одних случаях на протяжении этих 3 дней пищевой рацион не содержал углеводов (белково-жировой рацион). За эти дни восстановления израсходованного гликогена в мышцах (и печени) почти не происходило. Поэтому упражнение повторно выполнялось при низком содержании гликогена. Предельная продолжительность его снизилась в среднем до 60 мин,

В других случаях на протяжении 3 дней после "истощающей" гликоген нагрузки пищевой рацион был с повышенным содержанием углеводов - 80-90% суточного калоража обеспечивалось углеводами (против 40% в смешанном рационе). В результате содержание гликогена в. мышцах (и печени) в 1,5-3 раза превышало обычное для данного человека.

Такая комбинация предварительной "истощающей" гликоген нагрузки и последующего трехдневного усиленного углеводного рациона, вызывающая значительное повышение содержания гликогена в рабочих мышцах и печени, получила название метода углеводного, насыщения - МУН (Я.М. Коц). Интересно, что само по себе усиленное углеводное питание без предварительного истощения гликогена приводит лишь к. небольшому повышению его содержания в мышцах.

Применение МУН дает значительное увеличение предельной продолжительности работы - в среднем до 120 мин. Таким образом, субмаксимальная аэробная работоспособность находится в прямой зависимости, от исходных запасов гликогена в мышцах и печени.

В энергообеспечении аэробных упражнений более низкой мощности (средней и ниже) значительную роль наряду с углеводами играют жиры (их относительная роль тем больше, чем ниже мощность упражнения). В конце выполнения таких упражнений содержание гликогена в рабочих мышцах снижено существенно, но не до такой степени, как при субмаксимальных аэробных упражнениях. Поэтому истощение его не может рассматриваться как ведущий фактор утомления. И все же это весьма важный фактор, так как по мере уменьшения содержания гликогена в рабочих мышцах они все в большей степени используют глюкозу крови, которая, как известно, служит единственным энергетическим источником для нервной системы. Из-за увеличения использования глюкозы работающими мышцами уменьшаются запасы гликогена в печени, расщепление которого обеспечивает поступление глюкозы в кровь. Поэтому по мере выполнения упражнений средней аэробной мощности снижается содержание глюкозы в крови (развивается гипогликемия), что может привести к нарушению деятельности ЦНС и утомлению. Чем выше исходное содержание гликогена в мышцах и печени, тем позднее развивается гипогликемия и наступает утомление при выполнении таких упражнений. Прием углеводов (глюкозы) на дистанции предотвращает или отдаляет эти явления. Вместе с тем если углеводы принимаются до старта, то повышается выброс инсулина в кровь и снижается концентрация глюкозы во время работы, т. е. более быстро развивается гипогликемия и наступает утомление.