Сердечно-сосудистая система
Сердечный выброс во время плавания увеличивается почти линейно с ростом потребления О2 (скорости плавания), и при одинаковом субмаксимальном потреблении О2 он примерно такой же, как и при беге или работе на велоэргометре (рис. 82).
Максимальный сердечный выброс у тренированных пловцов во время плавания такой же, как при беге, а у нетренированных пловцов может быть на 25% ниже.
Частота сердечных сокращений во время плавания возрастает линейно с увеличением потребления О2 (скорости плавания); она обычно несколько ниже, чем при беге или работе на велоэргометре с таким же уровнем потребления О2. Это необходимо учитывать, когда ЧСС используется как показатель нагрузки. Снижение температуры воды уменьшает ЧСС, что компенсируется увеличением систолического объема.
Максимальная ЧСС при плавании также меньше, чем при беге, в среднем на 10-15 уд/мин. У мужчин она составляет в беге около .200 уд/мин, а в плавании - около 185 уд/мин, у женщин соответственно около 200 и 190 уд/мин.
Рис. 82. Гемодинамические показатели при плавании (светлые символы) и беге (темные символы) с разной скоростью у 5 испытуемых |
Систолический объем растет при переходе от покоя к легкой работе и далее увеличивается с ростом мощности работы (скорости потребления О2). При относительно небольших аэробных нагрузках он^достигает определенного уровня, а затем, несмотря на увеличение нагрузки (скорости плавания), вплоть до максимальной, остается неизменным или лишь слегка увеличивается (см. рис. 82).
Горизонтальное положение тела создает благоприятные условия для усиленного венозного возврата и соответственно для большого заполнения сердца во время диастолы. Поэтому при одинаковом субмаксимальном уровне потребления О2 систолический объем во время плавания больше, чем во время работы на велоэргометре, что соответственно ведет к снижению ЧСС во время плавания.
При максимальной аэробной нагрузке в плавании достигается наибольший для данного человека систолический объем. У тренированных пловцов он такой, же, как и при беге, а- у нетренированных- ниже, чем при беге. Как и у представителей других видов спорта, требующих проявления выносливости, систолический объем у пловцов в значительной мере определяется объемом (дилятацией) полостей сердца.
Системная АВР-О2 при субмаксимальном уровне потребления О2 примерно одинакова в плавании и в беге, а при максимальном аэробном плавании несколько меньше по сравнению с максимальным аэробным бегом (соответственно около 15- и 16%).
Содержание О2 в артериальной крови примерно одинаково во время плавания и бега. Максимальная экстракция О2 работающими мышцами из крови также одинакова: минимальное содержание О2 в крови бедренной вены в обоих случаях составляет около 2 об%. Следовательно, различие в максимальной системной АВР-О2 отражает, по-видимому, особое распределение кровотока при плавании с увеличением кровоснабжения "неактивных" органов и тканей тела.
Поскольку максимальная АВР-О2 при плавании и беге почти одинакова, сниженное при плавании МПК почти целиком объясняется уменьшенным в воде максимальным сердечным выбросом (из-за снижения максимальной ЧСС). Однако квалифицированные пловцы способны увеличивать свой систолический объем во время плавания, компенсируя сниженную ЧСС и поддерживая. максимальный сердечный выброс. В значительной мере механизм этого эффекта в усиленном венозном возврате за счет эффективного действия мышечного "насоса". У неквалифицированных пловцов этот механизм недостаточно развит.
Среднее артериальное давление при субмакси-мальной и максимальной нагрузках в плавании больше, чем в беге, обычно на 10-20%. Это может быть результатом повышенного внешнего (гидростатического.) давления .на тело и увеличения периферического сосудистого сопротивления кровотоку из-за сужения кожных кровеносных сосудов вследствие низкой кожной температуры (26-28°). Определенную роль играет также количество участвующей в работе мышечной массы. Известно, что сокращение небольших групп мышц вызывает более высокий подъем кровяного давления, чем напряжение больших'мышечных групп.
При вертикальном положении тела на суше перфузионное давление в сосудах работающих ног повышено за счет гидростатического давления столба крови. Поэтому перфузия крови при беге облегчена по сравнению с горизонтальным положением тела при плавании. Однако повышенное АД во время плавания может вызвать усиление перфузии крови через сосуды работающих мышц, создавая благоприятные условия для снабжения их кислородом.
- Коц я.М. - Спортивная физиология. Учебник для институтов физической культуры. Оглавление
- Введение
- Общая физиологическая классификация физических упражнений
- Локальные, региональные и глобальные упражнениния
- Статические и динамические упражнения
- Силовые, cкоростно-силовые упражнения и упражнения на выносливость
- Энергетическая характеристика физических упражнений
- Физиологическая классификация спортивных упражнений
- Классификация циклических упражнений
- Классификация ациклических упражнений
- Глава 2. Динамика физиологического состояния организма при спортивной деятельности
- Предстартовое состояние и разминка
- Предстартовое состояние
- Разминка
- Врабатывание, "мертвая точка", "второе дыхание"
- "Мертвая точка" и "второе дыхание"
- Устойчивое состояние
- Утомление
- Локализация и механизмы утомление
- Утомленние при выполнении различных спортивных упражнений
- Восстановление
- Восстановление функций после прекращения работы
- Кислородный долг и восстановление энергетических запасов организма
- Активный отдых
- Глава 3. Физиологические основы мышечной силы и скоростно-силовых качеств (мощности)
- Физиологические основы мышечной силы
- Максимальная статическая сила и максимальная произвольная статическая сила мышц
- Связь произвольной силы и выносливости
- Рабочая гипертрофия мышц
- Физиологические основы скоростно-силовых качеств (мощности)
- Скоростной компонент мощности
- Энергетическая характеристика скоростно-силовых упражнений
- Глава 4. Физиологические основы выносливости Определение понятия
- Аэробные возможности организма и выносливость
- Кислородтранспортная система и выносливость
- Система внешнего дыхания
- Система крови
- Сердечно сосудистая система (кровообращение)
- Мышечный аппарат и выносливость
- Глава 5. Физиологические основы формирования двигательных навыков и обучения спортивной технике
- Условнорефлекторные механизмы как физиологическая основа формирования двигательных навыков
- Роль афферентации (обратных связей) в формировании и сохранении двигательного навыка
- Двигательная память
- Автоматизация движений
- Спортивная техника и энергетическая экономичность выполнения физических упражнений
- Физиологическое обоснование принципов обучения спортивной технике
- Глава 6. Влияние температуры и влажности воздуха на спортивную работоспособность
- Физические механизмы теплоотдачи в условиях повышения температуры и влажности воздуха
- Физиологические механизмы усиления теплоотдачи в условиях повышенных температуры и влажности воздуха влажности воздуха
- Кожный кровоток и температура кожи
- Водно-солевой баланс
- Система кровообращения
- Тепловая адаптация (акклиматизация)
- Физиологические изменения и их механизмы при тепловой адаптации
- Тепловая адаптация у спортсменов
- Питьевой режим
- Потеря воды м их восполнение во время соревнования
- Потери воды и солей в процессе тренировки в жарких условиях
- Спортивная деятельность в условиях пониженной температуры воздуха (холода)
- Физиологические механизмы приспособления к холоду
- Физическая работоспособность в холодных условиях
- Акклиматизация к холоду
- Глава 7. Спортивная работоспособность в условиях пониженного атмосферного давления (среднегорья и при смене поясно-климатических условий
- Острые физиологические эффекты пониженного атмосферного давления
- Функция дыхания
- Функция кровообращения
- Снижение мпк
- Горная акклиматизация (адаптация к высоте)
- Изменения в системе кровообращения
- Изменение мпк
- Спортивная работоспособность в среднегорье и после возвращения на уровень моря
- Спортивная работоспособность при выполнении скоростно-сиповых (анаэробных) упражнений
- Спортивная работоспособность при выполнении упражнений на выносливость
- Смена поясно-климатических условий
- Глава 8. Физиология плавания
- Механические факторы
- Максимальное потребление кислорода
- Кислород транспортная система
- Сердечно-сосудистая система
- Локальные (мышечные) факторы
- Терморегуляция
- Глава 9. Физиологические особенности спортивной тренировки женщин
- Зависимость функциональных возможностей организма от размеров тела
- Силовые, скоростно-силовые и анаэробные возможности женщин Мышечная сила
- Анаэробные энергетические системы у женщин
- Аэробная работоспособность (выносливость) женщин Максимальное потребление кислорода
- Максимальные возможности кислород-транспортной системы
- Субмаксимальная аэробная работоспособность
- Физиологические изменения в результате тренировки выносливости
- Менструальный цикл и физическая работоспособность
- Глава 10. Физиологические особенности спортивной тренировки детей школьного возраста
- Индивидуальное развитие и возрастная периодизация
- Возрастньш особенности физиологических функций и систем
- Высшая нервная деятельность
- Обмен веществ и энергии
- Система кроем
- Кровооброшение
- Развитие движений и формирование двигательных (физических) качеств
- Двигательный аппарат
- Характеристика основных движений
- Развитие двигательных качеств
- Физиологическая характеристика юных спортсменов
- Возрастные особенности спортивной работоспособности
- Спортивная ориентация и ее физиологические критерии
- Глава 11. Общие физиологические закономерности (принципы) занятий физической культурой и спортом
- Два основных функциональных эффекта тренировки
- Пороговые тренирующие нагрузки
- Интенсивность тренировочных нагрузок
- Длительность тренировочных нагрузок
- Частота тренировочных нагрузок
- Объем тренировочных нагрузок
- Специфичность тренировочных эффектов
- Специфичность тренировочных эффектов в отношении двигательного навыка (спортивной техники)
- Специфичность тренировочных эффектов в отношении ведущего физического (двигательного) качества
- Специфичность тренировочных эффектов в отношении состава активных мышечных групп
- Специфичность тренировочных эффектов, проявляемая при разных условиях внешней среды
- Обратимость тренировочных эффектов
- Тренируемость