5.1. Структурно-функциональная характеристика скелетной мышцы и механизм ее сокращения
Структурной и функциональной единицей скелетной мышцы является мышечное волокно, представляющее собой сильно вытянутую многоядерную клетку. Длина мышечного волокна зависит от размеров мышцы и составляет от нескольких милли-
74
75
Специфическими элементами мышечного волокна являются специализированный сократительный аппарат - миофибриллы, системы продольных трубочек - саркоплазматическая сеть (ретикулум) и система поперечных трубочек - Т-система, представляющая собой впячивания поверхностной мембраны мышечного волокна внутрь его. Миофибрилла состоит из нескольких саркомеров, являющихся функциональной единицей сократительного аппарата мышечного волокна. Саркомеры отделяются друг от друга 2-пластинками.
76
На боковых сторонах миозиновой нити имеются выступы, получившие название поперечных мостиков, состоящих из головки и шейки. Головка приобретает выраженную АТФ-азную активность при контакте с актином.
При сокращении происходит укорочение саркомера вследствие активного перемещения тонких актиновых нитей относительно толстых миозиновых.
Механизм мышечного сокращения. Мышца сокращается в естественных условиях только при поступлении к ней нервных импульсов. Нервное влияние на мышечное волокно передается с помощью нервно-мышечного синапса. Медиатором в нервно-мышечном синапсе является ацетилхолин. На один ПД из пресинаптиче-ского окончания нервно-мышечного синапса выделяется 200-300 квантов медиатора.
В состоянии покоя мышцы, т.е. в промежутках между передачей нервного импульса, происходит спонтанное выделение 1-2 квантов медиатора в синаптическую щель в среднем 1 раз в секунду. При этом на постсинаптической мембране формируется деполяризация с амплитудой 0,12-0,24 мВ. Такие потенциалы получили название миниатюрные потенциалы концевой пластинки. Они, вероятно, поддерживают высокую возбудимость синапсов в условиях функционального покоя нервных центров. Кроме эк-зоцитоза медиатора существует постоянная неквантовая утечка молекул медиатора в синаптическую щель. Предполагают, что неквантовая секреция играет трофическую роль.
Пришедший по нервному волокну импульс (ПД) обеспечивает выделение в синаптическую щель ацетилхолина, который на пост-• синаптической мембране (концевой пластинке мышечного волокна) вызывает возникновение потенциала концевой пластинки (ПКП) -возбуждающего постсинаптического потенциала (ВПСП), амплитуда которого составляет 30-40 мВ. ПКП - это локальный потенциал, который, достигнув критической величины, обеспечивает возникновение ПД в мышечном волокне. ПД распространяется по мышечному волокну и Т-системе в глубь волокна, что обеспечивает выделение ионов Са2+ из саркоплазматического ретикулума. При взаимодействии ионов Са2+ с тропонином происходят смещение тропомиозина и освобождение активных центров на актиновых нитях.
Затем происходит присоединение головки поперечного мостика миозина к актиновой нити. При этом головка миозина приобретает АТФ-азную активность, что обеспечивает гидролиз АТФ и освобождение энергии, обеспечивающей поворот головки миозина вокруг своей оси (гребковое действие), что в свою очередь приво-
77
дит к скольжению нитей актина и миозина относительно друг друга и укорочению саркомера и общей длины мышцы. Миозиновая головка имеет несколько активных центров, которые последовательно взаимодействуют с соответствующими центрами на актиновой нити. В каждый конкретный момент в процессе развития сокращения одни головки поперечных мостиков находятся в соединении с актиновой нитью, другие свободны, т. е. существует последовательность их взаимодействия с актиновой нитью, что обеспечивает плавность процесса сокращения.
Повторное присоединение миозиновой головки к новому центру на актиновой нити вновь приводит к повороту головки, который обеспечивается запасенной в ней энергией. В каждом цикле соединения и разъединения головки миозина с актином расщепляется одна молекула АТФ на каждый мостик. Быстрота поворота определяется скоростью расщепления АТФ.
Для расслабления мышцы в первую очередь необходимо понижение концентрации ионов Са2+ в области сократительных элементов мышечного волокна. Саркоплазматическая сеть имеет кальциевый насос, который активно возвращает кальций в цистерны. Активация кальциевого насоса осуществляется неорганическим фосфатом, который образуется при гидролизе АТФ, а энергообеспечение работы кальциевого насоса также осуществляется за сче* энергии, образующейся при гидролизе АТФ.
Источником энергии для восстановления израсходованной АТФ являются белки, жиры и углеводы пищи, которые подвергаются расщеплению в желудочно-кишечном тракте и в виде мономеров поступают в кровь и лимфу.
В организме в результате биохимических превращений образуется АТФ или синтезируются крупномолекулярные вещества. АТФ - донор свободной энергии в клетках. В клетках АТФ используется в течение одной минуты после ее образования, скорость оборота АТФ очень велика. Стабильность концентрации АТФ в клетке поддерживается рядом механизмов, одним из которых является образование креатинфосфата (КФ). Когда количество АТФ превышает определенный уровень, часть ее энергии используется для синтеза КФ, количество которого при этом возрастает. При повышении же распада АТФ в условиях активации энергетического обмена КФ используется для ресинтеза АТФ с помощью окисления и фосфорилирования.
Существуют и бескислородные (анаэробные) пути преобразования энергии, в которых могут быть использованы только углеводы (анаэробный гликолиз); такие способы реализуются при недостаточном поступлении кислорода в организм, ткани и клетки. При
полном прекращении дыхания и расходовании резервов кислорода эти процессы могут обеспечить потребность в энергии еще в течение двух минут.
Запас АТФ в скелетных мышцах обеспечивает всего лишь 10 одиночных сокращений. При максимальном мышечном сокращении имеющихся в тканях запасов АТФ достаточно лишь на одну секунду. Энергия КФ, концентрация которого в три-восемь раз больше, чем АТФ, может поддержать такое сокращение в течение еще нескольких секунд. При максимальном сокращении на протяжении нескольких секунд абсолютно необходим анаэробный гликолиз, в котором используются запасы гликогена. Ресинтез гликогена из образующейся при этом молочной кислоты возможен, однако, лишь в аэробных условиях.
Аэробное окисление глюкозы и жирных кислот в цикле Кребса, совершаемое в митохондриях, - это наиболее типичный способ энергообеспечения скелетных мышц. Запасы свободной глюкозы, гликогена и жиров в мышцах достаточно велики. Однако при длительной работе в организме накапливаются недоокисленные продукты (молочная кислота и др.). Создается кислородная задолженность. Такой долг погашается после работы за счет компенсаторной мобилизации кровообращения и дыхания (тахикардия, повышение кровяного давления, одышка). Если же работа, несмотря на наличие кислородного долга, продолжается, наступает выраженное состояние утомления, которое иногда прекращается за счет мобилизации дополнительных резервов кровообращения и дыхания («второе дыхание» спортсменов).
Таким образом, энергия АТФ в скелетной мышце используется для трех процессов: 1) работы № / К-насоса, обеспечивающего поддержание постоянства градиента концентрации этих ионов по обе стороны мембраны; 2) процесса скольжения актиновых и миозино-вых нитей, приводящих к укорочению миофибрилл (комплекс актин - миозин становится стабильным только при трупном окоченении, когда концентрация АТФ в мышце падает ниже некоторой критической величины)* 3) работы Са-насоса, активируемого при расслаблении волокна.
- Предисловие
- Часть I учебника оформлена в традиционном для учебников по физиологии стиле - по отдельным системам - и состоит из трех разделов.
- Раздел I
- Глава 1 общая физиология возбудимых тканей
- 1.1. Потенциал покоя
- 1.2. Потенциал действия
- 1.3. Локальный потенциал
- 1.4. Изменения возбудимости клетки во время ее возбуждения. Лабильность
- 1.5. Оценка возбудимости клетки. Аккомодация
- Глава 2 понятия о регуляции функций организма
- 2.1. Нервный механизм регуляции. Рефлекторная дуга Общая характеристика
- 2.2. Характеристика гормональной регуляции
- 2.4. Системный принцип регуляции
- 2.5. Типы регуляции функций организма
- Глава 3 физиология вегетативной нервной системы
- 3.1. Симпатическая нервная система
- 3.2. Мозговой слой надпочечников - составная часть симпатоадреналовой системы
- 3.3. Парасимпатическая нервная система
- 3.4. Интраорганная нервная система и тканевые рецепторы
- 3.5. Взаимодействие между отделами вис и регуляция функций синапсов
- 3.6. Центры и афференты вегетативной нервной системы
- 3.7. Дуга вегетативного рефлекса
- 3.8. Тонус вегетативных центров
- 3.9. Трофическое действие нервной системы
- Глава 4 физиология желез внутренней секреции
- 4.1. Механизм действия гормонов
- 4.2. Регуляция выработки гормонов
- 4.3. Гипофиз
- 4.4. Гормоны коры надпочечников
- 4.5. Щитовидная и паращитовидные железы
- 4.6. Поджелудочная железа
- 4.7. Половые железы
- 4.8. Другие органы, вырабатывающие гормоны
- Глава 5 регуляция движений
- 5.1. Структурно-функциональная характеристика скелетной мышцы и механизм ее сокращения
- 5.2. Виды мышечных сокращений
- 5.3. Двигательные единицы
- 5.4. Сила мышцы и ее работа
- 5.5. Функции центральной нервной системы
- 5.6. Функции клеток цнс и ликвора, классификация нейронов цнс, их медиаторы и рецепторы
- 5.9. Свойства нервных центров
- 5.10. Торможение в цнс
- 5.11. Координационная деятельность цнс
- 5.12. Роль спинного мозга в осуществлении движений
- Рефлексы спинного мозга
- 5.13. Двигательные системы ствола мозга
- 5.14. Функции ретикулярной формации
- 5.15. Мозжечок
- 5.16. Промежуточный мозг
- 5.17. Базальные ганглии
- 5.18. Лимбическая система
- 5.19. Физиология коры большого мозга
- Раздел II
- Глава 6 система крови
- 6.1. Кровь как внутренняя среда организма
- 6.2. Физиология эритроцитов
- 6.3. Физиология лейкоцитов
- 6.4. Системы групп крови
- 6.5. Система регуляции агрегатного состояния крови (раск)
- Фибринолиз
- Глава 7 система дыхания
- 7.1. Внешнее дыхание
- Механизм вдоха и выдоха
- 7.2. Транспорт газов кровью
- Транспорт кислорода
- Транспорт углекислого газа
- 7.3. Регуляция дыхания
- Саморегуляция вдоха и выдоха
- Нейрогуморальная регуляция интенсивности дыхания
- 8.1. Цикл сердечной деятельности
- 8.2. Особенности свойств сердечной мышцы и ее энергообеспечения
- 8.3. Автоматия сердца и аритмия в его деятельности
- 8.4. Методы исследования деятельности сердца
- 8.5. Регуляция деятельности сердца
- 8.6. Гемодинамика
- Движение крови по артериям
- Движение крови по капиллярам
- Движение крови по венам
- 8.7. Особенности кровотока в легких
- 8.8. Регуляция тонуса сосудов
- Нервная регуляция
- 3. Вещества двоякого действия на сосуды.
- 8.9. Регуляция системного артериального давления
- Центр кровообращения
- 8.10. Сопряженные рефлексы сердечно-сосудистой системы
- 8.11. Лимфатическая система
- Глава 9 пищеварительная система
- 9.1. Понятия. Характеристика гладкой мышцы
- 9.2. Функции пищеварительной системы. Состояние голода и насыщения
- 9.3. Пищеварение в полости рта. Акт глотания
- 9.4. Пищеварение в желудке
- Гидролиз пищи в желудке
- Моторная функция желудка
- 9.5. Пищеварение в тонкой кишке
- Роль печени в пищеварении
- 9.6. Всасывание
- 9.7. Пищеварение в толстой кишке
- Глава 10 обменвеществ и энергии
- 10.1. Понятия
- 10.2. Обмен веществ
- 10.3. Обмен энергии в организме
- Глава 11 выделительная система
- 11.1. Характеристика системы выделения
- 11.2. Структурно-функциональная характеристика почки
- 11.3. Роль различных отделов нефрона в мочеобразовании
- 11.5. Регуляция мочеобразовательной функции почек
- 11.6. Роль почек в поддержании показателей организма
- 11.7. Количество и состав конечной мочи
- 11.8. Выведение мочи
- Раздел III
- Глава 12 анализаторы (сенсорные системы)
- 12.1. Общая физиология анализаторов
- 12.2. Зрительный анализатор
- 12.3. Слуховой анализатор
- 12.4. Вестибулярный анализатор
- 12.5. Другие анализаторы
- 12.6. Болевой анализатор и обезболивающая (антиноцицептивная) система
- Глава 13 высшая нервная деятельность
- 13.1. Методы исследования внд
- 13.2. Характеристика условных рефлексов
- 13.3. Механизм образования условных рефлексов
- 13.4. Память
- 13.5. Основные формы научения
- 13.6. Торможение условных рефлексов
- 13.7. Учение о типах высшей нервной деятельности
- 13.8. Основные формы психической деятельности
- 13.9. Особенности внд человека
- 13.10. Осознаваемая и подсознательная деятельность мозга
- 13.11. Бодрствование и сон. Сновидения
- 13.12. Принципы организации поведенческих реакций
- Глава 14
- 14.1. Акселерация и ретардация роста и развития детей и подростков
- 14.2. Физиология нервов и синапсов
- 14.3. Вегетативная нервная система
- 14.4. Эндокринная система
- Гормоны гипофиза
- Половые гормоны
- 14.5. Физиология цнс
- 14.6. Физиология мышц
- 14.7. Система крови
- 14.8. Система дыхания
- 14.9. Кровообращение
- 14.10. Пищеварение, обмен веществ и энергии, выделение, терморегуляция
- 14.11. Сенсорные системы (анализаторы)
- 14.12. Высшая нервная деятельность (внд)
- Раздел I физиология внутрен
- Глава 15 сердечно-сосудистая система и система крови
- 15.1. Частота сердечных сокращений (чсс)
- 15.2. Кровяное (артериальное) давление
- 15.3. Ударный объем сердца (уос)
- 15.4. Минутный объем сердца (мос)
- 15.5. Сосудистое сопротивление
- 15.6. Региональный кровоток
- 15.7. Газы и рн крови, гематокрит
- 15.8. Внутрисердечная гемодинамика
- 15.9. Сердечный цикл
- 15.10. Сила сокращения миокарда
- 15.11. Сократимость сердечной мышцы
- 15.12. Сердечный выброс и распределение крови
- Мышечный насос
- Работа сердца
- Электрокардиограмма (экг)
- Патологические изменения экг
- Нарушения проводимости
- 15.13. Тестирование физической работоспособности
- Нагрузочные тесты для детей
- Определение максимального потребления кислорода (мпк)
- Тестирование анаэробной производительности
- Показатели крови
- Глава 16 органы системы дыхания
- 16.1. Система внешнего дыхания
- 16.2. Исследование диффузной способности легких
- 16.3. Роль дыхания в поддержании кислотно-щелочного равновесия (кщр)
- Глава 17
- 17.1. Желудочно-кишечный тракт
- Переваривание и всасывание белков
- Всасывание воды, солей, микроэлементов, витаминов
- 17.2. Сбалансированный рацион питания
- Водный и электролитный баланс
- 17.3. Влияние физической нагрузки на пищеварительные процессы
- Обмен веществ в условиях покоя
- Интенсивность обмена веществ во время занятий спортом
- Глава 18 эндокринная система
- 18.1. Щитовидная железа
- 18.2. Гормоны надпочечников
- 18.3. Гормоны поджелудочной железы
- 18.4. Гормоны гипофиза
- 18.5. Паращитовидные железы
- 18.6. Гормоны половых желез
- 18.7. Тимус (вилочковая железа)
- 18.8. Эпифиз
- 18.9. Гипоталамус
- 18.10. Гормоны и физическая деятельность
- Глава 19
- Центральная нервная система
- И нервно-мышечный аппарат.
- Анализаторы
- 19.1. Исследование цнс и нервно-мышечного аппарата
- 19.2. Исследование рефлексов
- Висцеральные рефлексы и симптомы их нарушения
- 19.3. Исследование остроты зрения, цветоощущения, поля зрения
- 19.4. Исследование слуха
- 19.5. Исследование анализаторов
- 19.6. Исследование вегетативной нервной системы (внс)
- Раздел II
- Глава 20 состояние организма при занятиях спортом
- 20.1. Предстартовое состояние
- Л 20.2. Разминка
- 20.3. Физиологическая характеристика мышечной работы
- Динамическая работа
- 20.4. Тренировка
- 20.5. Физическая работоспособность
- Спортивная форма
- Умственное утомление
- Хроническое утомление
- 20.6. Невроз
- 20.7. Адаптивные процессы при тренировке
- 20.8. Пол и возраст
- Глава 21
- 21.1. Циклические виды спорта
- 21.2. Игровые виды спорта
- 21.3. Единоборства
- 21.4. Скоростно-силовые виды спорта
- 21.5. Сложнотехнические виды спорта
- 21.6. Другие виды спорта
- Глава 22
- Характеристика
- Оздоровительной (профилактической)
- Физкультуры
- 22.1. Гиподинамия
- 22.2. Физиологическое обоснование применения средств физкультуры
- Гимнастика
- Гимнастика в воде
- Занятия на тренажерах
- Спортивные игры
- Бадминтон
- Настольный теннис
- Водный туризм
- Лыжный туризм
- Ближний туризм
- Терренкур
- 22.3. Расход энергии
- Энергозатраты во время занятий оздоровительной физкультурой
- Глава 23
- 23.1. Сон. Гиперсомния
- 23.2. Боль
- 23.3. Боли в мышцах. Судороги мышц
- 23.4. Болевой печеночный синдром
- 23.5. Бронхоспазм
- 23.6. Нормализация массы тела
- Раздел III
- Глава 24 терморегуляция. Акклиматизация
- 24.1. Терморегуляция
- 24.2. Тепловой баланс
- Гипертермия
- Излучение
- Теплопроводность
- Конвекция
- Испарение
- 24.3. Регуляция теплоотдачи
- Потоотделение
- 24.4. Акклиматизация (адаптация)
- 24.5. Температура тела в условиях физической нагрузки
- Глава 25 биологические ритмы
- 25.1. Классификация биоритмов
- 25.2. Биоритмы и работоспособность
- Глава 4. Физиология желез внутренней секреции 64
- Глава 5. Регуляция движений 75
- Часть II. Физиология детей
- Глава 14. Особенности физиологии детей и подростков 343
- Часть III. Физиология физического воспитания и спорта (в. И. Дубровский) 371
- Раздел I. Физиология внутренних органов 373
- Глава 15. Сердечно-сосудистая система и система крови 373
- 117571, Москва, просп. Вернадского, 88,
- 117571, Москва, просп. Вернадского, 88,