logo search
ЗИМНЯЯ СЕССИЯ / ФИЗИОЛОГИЯ ФИЗИЧЕСКОГО ВОПИОГО ВОСПИТАНИЯ И СПОРТА / Физиология человека

Морфофункциональные основы мышечной силы

Движение является результатом взаимодействия внутренних и внешних сил, развиваемых в опорно-двигательном аппарате, — ак­тивных (возникающих при сокращении или напряжении мышцы во время ее возбуждения) и пассивных (упругое напряжение при растя­жении мышцы, сопротивление мышцы и ее сухожилия).

Сила мышцы зависит отряда морфологических и физиологи­ческих факторов: количества и свойств мышечных волокон в мышце,

57

исходной длины мышцы, характера нервных импульсов, механи­ческих условий действия мышцы на кости скелета.

Сила мышцы является суммой силы отдельных ее мышечных воло­кон. Подсчитано, что 1 одиночное мышечное волокно икроножной мышцы развивает напряжение 100-200 мг, ІДЕ икроножной мыш­цы человека содержит около 2000 мышечных волокон и развивает напряжение 200-400 г, 1 икроножная мышца содержит около 1000 ДЕ, т. е. развивает напряжение 200-400 кг.

Большое значение имеет анатомическое строение мышцы. В параллельно-волокнистых и веретенообразных мышцах (камбаловидная мышца и др.) сила мышц тем больше, чем больше ее анатомический поперечник, т. е. площадь поперечного сечения целой мышцы. В перистых мышцах (двуглавая мышца и др.) физиологический попе­речник, т. е. площадь поперечного сечения всех мышечных волокон гораздо больше, чем ее анатомический поперечник. В такой мышце упаковано значительно больше мышечных волокон и, соответствен­но, больше ее сила.

На силу сокращения мышцы влияет ее исходная длина, так как от нее. зависит возможное количество поперечных мостиков между актином и миозином. Предполагают, что в каждом цикле при­соединения-отсоединения поперечных мостиков расходуется энер­гия 1 молекулы АТФ на 1 поперечный мостик. Следовательно, чем больше образуется в мышечном волокне актино-миозиновых мости­ков, тем выше скорость расщепления АТФ, больше тяга сократитель­ных белков и, соответственно, больше развиваемая мышцей сила.

Наибольшее количество актино-миозиновых контактов образу­ется при небольшом растяжении мышцы до некоторой оптимальной длины. При значительном растяжении саркомера нити актина далеко расходятся в стороны и практически не контактируют с расположен­ным в средней части саркомера миозином. В случае же резкого уменьшения длины саркомера нити актина в центре перекрывают друг друга, препятствуя контактам с миозином и также уменьшая число образуемых мостиков. В связи с этими особенностями взаимо­действия сократительныхбелков наибольшая сила мышцы проявля­ется при некотором ее предварительном растяжении.

Одной из важнейших характеристик скелетных мышц, влияющих на силу сокращения, является состав (композиция) мы­шечных волокон. Различают 3 типа мышечных волокон — медленные неутомляемые (I типа), быстрые неутомляемые или про­межуточные ( 11-а типа) и быстрые утомляемые (11-б типа).

Медленные волокна (1 типа), их обозначают также SO — Slow Oxydative (англ. — медленные окислительные) — это выносливые (неутомляемые) и легко возбудимые волокна, с богатым кровоснаб­жением, большим количеством митохондрий, запасов миоглобина и

58

с использованием окислительных процессов энергообразования (аэробные). Их, в среднем, у человека 50%. Они легко включаются в работу при малейших напряжениях мышц, очень выносливы, но не обладают достаточной силой. Чаще всего они используются при под­держании ненагрузочной статической работы, например, при сохра­нении позы.

Быстрые утомляемые волокна (11-б типа) или FG — Fast Glicolitic (быстрые гликолитические) используют анаэробные процессы энер­гообразования (гликолиз). Они менее возбудимы, включаются при больших нагрузках и обеспечивают быстрые и мощные сокращения мышц. Зато эти волокна быстро утомляются. Их примерно 30%. Во­локна промежуточного типа (П-а) — быстрые неутомляемые, окис­лительные, их около 20%. В среднем, для разных мышц характерно различное соотношение медленных неутомляемых и быстрых утом­ляемых волокон. Так, в трехглавой мышце плеча преобладают быст­рые волокна (67%) над медленными (33%), что обеспечивает скоростно-силовые возможности этой мышцы (рис. 14), а для более медлен­ной и выносливой камбаловидной мышцы характерно наличие 84% медленных и всего 16% быстрых волокон (Салтан Б., 1979).

Однако, состав мышечных волокон в одной и той же мышце имеет огромные индивидуальные различия, зависящие от врожденных типо­логических особенностей человека. К моменту рождения человека его мышцы содержат лишь медленные волокна, но под влиянием не­рвной регуляции устанавливается в ходе онтогенеза генетически за­данное индивидуальное соотношение мышечных волокон разного типа. По мере перехода от зрелого возраста к пожилому число быст­рых волокон у человека заметно снижается и, соответственно, умень­шается мышечная сила. Например, наибольшее количество быстрых волокон в наружной головке 4-х главой мышцы бедра мужчины (около 59-63%) отмечается в возрасте 20-40 лет, а в возрасте 60-65 лет их число почти на 1/3 меньше (45%).

Рис. 14. Состав мышечных волокон в разных мышцах

Медленные — черным цветом; быстрые — серым

59

Количество тех или других мышечных волокон не изменяется в процессе тренировки. Возможно только нарастание толщины (гипер­трофия) отдельных волокон, а также некоторое изменение свойств промежуточных волокон. При направленности тренировочного про­цесса на развитие силы происходит нарастание объема быстрых воло­кон, что и обеспечивает повышение силы тренируемых мышц.

Характер нервных импульсов изменяет силу сокращения мышц тремя способами:

1) увеличением числа активных ДЕ — это механизм вовлечения или рекрутирования ДЕ (сначала происходит вовлечение медленных и более возбудимых ДЕ, затем — высокопо­роговых быстрых Д Е);

2) увеличением частоты нервных импульсов, в результате чего происходит переход от слабых одиночных сокраще­ний к сильным тетаническим сокращениям мышечных волокон;

3) увеличением синхронизации ДЕ, при этом происходит увеличение силы сокращения целой мышцы за счет одновременной тяги всех ак­тивных мышечных волокон.

Существенное значение имеют механические условия работы мышцы —точка приложения ее силы и точка прило­жения сопротивления (поднимаемого груза). Например, при сгиба­нии в локте вес поднимаемого груза может быть порядка 40 кг и более, при этом сила мышц-сгибателей достигает 250 кг, а тяга су­хожилий — 500 кг.

Между силой и скоростью сокращения мышцы существует опре­деленное соотношение, имеющее вид гиперболы (соотношение сила — скорость, по А. Хиллу). Чем выше сила, развиваемая мышцей, тем меньше скорость ее сокращения, и наоборот, с нараста­нием скорости сокращения падает величина усилия. Наибольшую скорость развивает мышца, работающая без нагрузки. Скорость мы­шечного сокращения зависит от скорости передвижения поперечных мостиков, т. е. от частоты гребковых движений в единицу времени. В быстрых ДЕ эта частота выше, чем в медленных ДЕ, и, соответствен­но, потребляется больше энергии АТФ. Во время сокращения мы­шечных волокон в 1 с происходит примерно от 5 до 50 циклов при­крепления-отсоединения поперечных мостиков. При этом никаких колебаний силы в целой мышце не ощущается, так как ДЕ работают асинхронно. Лишь при утомлении возникает синхронная работа ДЕ, и в мышцах появляется дрожь (тремор утомления).